Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
medRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645101

RESUMO

Background: Multiplexed Assays of Variant Effects (MAVEs) can test all possible single variants in a gene of interest. The resulting saturation-style data may help resolve variant classification disparities between populations, especially for variants of uncertain significance (VUS). Methods: We analyzed clinical significance classifications in 213,663 individuals of European-like genetic ancestry versus 206,975 individuals of non-European-like genetic ancestry from All of Us and the Genome Aggregation Database. Then, we incorporated clinically calibrated MAVE data into the Clinical Genome Resource's Variant Curation Expert Panel rules to automate VUS reclassification for BRCA1, TP53, and PTEN . Results: Using two orthogonal statistical approaches, we show a higher prevalence ( p ≤5.95e-06) of VUS in individuals of non-European-like genetic ancestry across all medical specialties assessed in all three databases. Further, in the non-European-like genetic ancestry group, higher rates of Benign or Likely Benign and variants with no clinical designation ( p ≤2.5e-05) were found across many medical specialties, whereas Pathogenic or Likely Pathogenic assignments were higher in individuals of European-like genetic ancestry ( p ≤2.5e-05). Using MAVE data, we reclassified VUS in individuals of non-European-like genetic ancestry at a significantly higher rate in comparison to reclassified VUS from European-like genetic ancestry ( p =9.1e-03) effectively compensating for the VUS disparity. Further, essential code analysis showed equitable impact of MAVE evidence codes but inequitable impact of allele frequency ( p =7.47e-06) and computational predictor ( p =6.92e-05) evidence codes for individuals of non-European-like genetic ancestry. Conclusions: Generation of saturation-style MAVE data should be a priority to reduce VUS disparities and produce equitable training data for future computational predictors.

2.
BMC Res Notes ; 17(1): 62, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433186

RESUMO

OBJECTIVE: Data from DNA genotyping via a 96-SNP panel in a study of 25,015 clinical samples were utilized for quality control and tracking of sample identity in a clinical sequencing network. The study aimed to demonstrate the value of both the precise SNP tracking and the utility of the panel for predicting the sex-by-genotype of the participants, to identify possible sample mix-ups. RESULTS: Precise SNP tracking showed no sample swap errors within the clinical testing laboratories. In contrast, when comparing predicted sex-by-genotype to the provided sex on the test requisition, we identified 110 inconsistencies from 25,015 clinical samples (0.44%), that had occurred during sample collection or accessioning. The genetic sex predictions were confirmed using additional SNP sites in the sequencing data or high-density genotyping arrays. It was determined that discrepancies resulted from clerical errors (49.09%), samples from transgender participants (3.64%) and stem cell or bone marrow transplant patients (7.27%) along with undetermined sample mix-ups (40%) for which sample swaps occurred prior to arrival at genome centers, however the exact cause of the events at the sampling sites resulting in the mix-ups were not able to be determined.


Assuntos
Serviços de Laboratório Clínico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Transplante de Medula Óssea , Genótipo , Laboratórios
3.
Artigo em Inglês | MEDLINE | ID: mdl-38447590

RESUMO

OBJECTIVE: This study evaluates an AI assistant developed using OpenAI's GPT-4 for interpreting pharmacogenomic (PGx) testing results, aiming to improve decision-making and knowledge sharing in clinical genetics and to enhance patient care with equitable access. MATERIALS AND METHODS: The AI assistant employs retrieval-augmented generation (RAG), which combines retrieval and generative techniques, by harnessing a knowledge base (KB) that comprises data from the Clinical Pharmacogenetics Implementation Consortium (CPIC). It uses context-aware GPT-4 to generate tailored responses to user queries from this KB, further refined through prompt engineering and guardrails. RESULTS: Evaluated against a specialized PGx question catalog, the AI assistant showed high efficacy in addressing user queries. Compared with OpenAI's ChatGPT 3.5, it demonstrated better performance, especially in provider-specific queries requiring specialized data and citations. Key areas for improvement include enhancing accuracy, relevancy, and representative language in responses. DISCUSSION: The integration of context-aware GPT-4 with RAG significantly enhanced the AI assistant's utility. RAG's ability to incorporate domain-specific CPIC data, including recent literature, proved beneficial. Challenges persist, such as the need for specialized genetic/PGx models to improve accuracy and relevancy and addressing ethical, regulatory, and safety concerns. CONCLUSION: This study underscores generative AI's potential for transforming healthcare provider support and patient accessibility to complex pharmacogenomic information. While careful implementation of large language models like GPT-4 is necessary, it is clear that they can substantially improve understanding of pharmacogenomic data. With further development, these tools could augment healthcare expertise, provider productivity, and the delivery of equitable, patient-centered healthcare services.

4.
Commun Biol ; 7(1): 174, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374434

RESUMO

Disparities in data underlying clinical genomic interpretation is an acknowledged problem, but there is a paucity of data demonstrating it. The All of Us Research Program is collecting data including whole-genome sequences, health records, and surveys for at least a million participants with diverse ancestry and access to healthcare, representing one of the largest biomedical research repositories of its kind. Here, we examine pathogenic and likely pathogenic variants that were identified in the All of Us cohort. The European ancestry subgroup showed the highest overall rate of pathogenic variation, with 2.26% of participants having a pathogenic variant. Other ancestry groups had lower rates of pathogenic variation, including 1.62% for the African ancestry group and 1.32% in the Latino/Admixed American ancestry group. Pathogenic variants were most frequently observed in genes related to Breast/Ovarian Cancer or Hypercholesterolemia. Variant frequencies in many genes were consistent with the data from the public gnomAD database, with some notable exceptions resolved using gnomAD subsets. Differences in pathogenic variant frequency observed between ancestral groups generally indicate biases of ascertainment of knowledge about those variants, but some deviations may be indicative of differences in disease prevalence. This work will allow targeted precision medicine efforts at revealed disparities.


Assuntos
Predisposição Genética para Doença , Saúde da População , Humanos , População Negra , Genômica , Hispânico ou Latino/genética , Estados Unidos/epidemiologia , População Europeia , População Africana
5.
Res Sq ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37790445

RESUMO

Objective: Data from DNA genotyping via a 96-SNP panel in a study of 25,015 clinical samples were utilized for quality control and tracking of sample identity in a clinical sequencing network. The study aimed to demonstrate the value of both the precise SNP tracking and the utility of the panel for predicting the sex-by-genotype of the participants, to identify possible sample mix-ups. Results: Precise SNP tracking showed no sample swap errors within the clinical testing laboratories. In contrast, when comparing predicted sex-by-genotype to the provided sex on the test requisition, we identified 110 inconsistencies from 25,015 clinical samples (0.44%), that had occurred during sample collection or accessioning. The genetic sex predictions were confirmed using additional SNP sites in the sequencing data or high-density genotyping arrays. It was determined that discrepancies resulted from clerical errors, samples from transgender participants and stem cell or bone marrow transplant patients along with undetermined sample mix-ups.

6.
Circ Genom Precis Med ; 16(2): e003816, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071725

RESUMO

BACKGROUND: The implications of secondary findings detected in large-scale sequencing projects remain uncertain. We assessed prevalence and penetrance of pathogenic familial hypercholesterolemia (FH) variants, their association with coronary heart disease (CHD), and 1-year outcomes following return of results in phase III of the electronic medical records and genomics network. METHODS: Adult participants (n=18 544) at 7 sites were enrolled in a prospective cohort study to assess the clinical impact of returning results from targeted sequencing of 68 actionable genes, including LDLR, APOB, and PCSK9. FH variant prevalence and penetrance (defined as low-density lipoprotein cholesterol >155 mg/dL) were estimated after excluding participants enrolled on the basis of hypercholesterolemia. Multivariable logistic regression was used to estimate the odds of CHD compared to age- and sex-matched controls without FH-associated variants. Process (eg, referral to a specialist or ordering new tests), intermediate (eg, new diagnosis of FH), and clinical (eg, treatment modification) outcomes within 1 year after return of results were ascertained by electronic health record review. RESULTS: The prevalence of FH-associated pathogenic variants was 1 in 188 (69 of 13,019 unselected participants). Penetrance was 87.5%. The presence of an FH variant was associated with CHD (odds ratio, 3.02 [2.00-4.53]) and premature CHD (odds ratio, 3.68 [2.34-5.78]). At least 1 outcome occurred in 92% of participants; 44% received a new diagnosis of FH and 26% had treatment modified following return of results. CONCLUSIONS: In a multisite cohort of electronic health record-linked biobanks, monogenic FH was prevalent, penetrant, and associated with presence of CHD. Nearly half of participants with an FH-associated variant received a new diagnosis of FH and a quarter had treatment modified after return of results. These results highlight the potential utility of sequencing electronic health record-linked biobanks to detect FH.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Hiperlipoproteinemia Tipo II , Adulto , Humanos , Pró-Proteína Convertase 9/genética , Registros Eletrônicos de Saúde , Penetrância , Prevalência , Estudos Prospectivos , Fatores de Risco , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Doença da Artéria Coronariana/genética , Fatores de Risco de Doenças Cardíacas , Genômica
7.
NPJ Genom Med ; 7(1): 27, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395838

RESUMO

Whole genome sequencing (WGS) shows promise as a first-tier diagnostic test for patients with rare genetic disorders. However, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading health care and research organizations in the US and Canada, was formed to expand access to high quality clinical WGS by convening experts and publishing best practices. Here, we present best practice recommendations for the interpretation and reporting of clinical diagnostic WGS, including discussion of challenges and emerging approaches that will be critical to harness the full potential of this comprehensive test.

8.
JAMA Oncol ; 8(6): 835-844, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35446370

RESUMO

Importance: Knowledge about the spectrum of diseases associated with hereditary cancer syndromes may improve disease diagnosis and management for patients and help to identify high-risk individuals. Objective: To identify phenotypes associated with hereditary cancer genes through a phenome-wide association study. Design, Setting, and Participants: This phenome-wide association study used health data from participants in 3 cohorts. The Electronic Medical Records and Genomics Sequencing (eMERGEseq) data set recruited predominantly healthy individuals from 10 US medical centers from July 16, 2016, through February 18, 2018, with a mean follow-up through electronic health records (EHRs) of 12.7 (7.4) years. The UK Biobank (UKB) cohort recruited participants from March 15, 2006, through August 1, 2010, with a mean (SD) follow-up of 12.4 (1.0) years. The Hereditary Cancer Registry (HCR) recruited patients undergoing clinical genetic testing at Vanderbilt University Medical Center from May 1, 2012, through December 31, 2019, with a mean (SD) follow-up through EHRs of 8.8 (6.5) years. Exposures: Germline variants in 23 hereditary cancer genes. Pathogenic and likely pathogenic variants for each gene were aggregated for association analyses. Main Outcomes and Measures: Phenotypes in the eMERGEseq and HCR cohorts were derived from the linked EHRs. Phenotypes in UKB were from multiple sources of health-related data. Results: A total of 214 020 participants were identified, including 23 544 in eMERGEseq cohort (mean [SD] age, 47.8 [23.7] years; 12 611 women [53.6%]), 187 234 in the UKB cohort (mean [SD] age, 56.7 [8.1] years; 104 055 [55.6%] women), and 3242 in the HCR cohort (mean [SD] age, 52.5 [15.5] years; 2851 [87.9%] women). All 38 established gene-cancer associations were replicated, and 19 new associations were identified. These included the following 7 associations with neoplasms: CHEK2 with leukemia (odds ratio [OR], 3.81 [95% CI, 2.64-5.48]) and plasma cell neoplasms (OR, 3.12 [95% CI, 1.84-5.28]), ATM with gastric cancer (OR, 4.27 [95% CI, 2.35-7.44]) and pancreatic cancer (OR, 4.44 [95% CI, 2.66-7.40]), MUTYH (biallelic) with kidney cancer (OR, 32.28 [95% CI, 6.40-162.73]), MSH6 with bladder cancer (OR, 5.63 [95% CI, 2.75-11.49]), and APC with benign liver/intrahepatic bile duct tumors (OR, 52.01 [95% CI, 14.29-189.29]). The remaining 12 associations with nonneoplastic diseases included BRCA1/2 with ovarian cysts (OR, 3.15 [95% CI, 2.22-4.46] and 3.12 [95% CI, 2.36-4.12], respectively), MEN1 with acute pancreatitis (OR, 33.45 [95% CI, 9.25-121.02]), APC with gastritis and duodenitis (OR, 4.66 [95% CI, 2.61-8.33]), and PTEN with chronic gastritis (OR, 15.68 [95% CI, 6.01-40.92]). Conclusions and Relevance: The findings of this genetic association study analyzing the EHRs of 3 large cohorts suggest that these new phenotypes associated with hereditary cancer genes may facilitate early detection and better management of cancers. This study highlights the potential benefits of using EHR data in genomic medicine.


Assuntos
Gastrite , Síndromes Neoplásicas Hereditárias , Pancreatite , Doença Aguda , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Masculino
9.
Genet Med ; 24(5): 1062-1072, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35331649

RESUMO

PURPOSE: The Mayo-Baylor RIGHT 10K Study enabled preemptive, sequence-based pharmacogenomics (PGx)-driven drug prescribing practices in routine clinical care within a large cohort. We also generated the tools and resources necessary for clinical PGx implementation and identified challenges that need to be overcome. Furthermore, we measured the frequency of both common genetic variation for which clinical guidelines already exist and rare variation that could be detected by DNA sequencing, rather than genotyping. METHODS: Targeted oligonucleotide-capture sequencing of 77 pharmacogenes was performed using DNA from 10,077 consented Mayo Clinic Biobank volunteers. The resulting predicted drug response-related phenotypes for 13 genes, including CYP2D6 and HLA, affecting 21 drug-gene pairs, were deposited preemptively in the Mayo electronic health record. RESULTS: For the 13 pharmacogenes of interest, the genomes of 79% of participants carried clinically actionable variants in 3 or more genes, and DNA sequencing identified an average of 3.3 additional conservatively predicted deleterious variants that would not have been evident using genotyping. CONCLUSION: Implementation of preemptive rather than reactive and sequence-based rather than genotype-based PGx prescribing revealed nearly universal patient applicability and required integrated institution-wide resources to fully realize individualized drug therapy and to show more efficient use of health care resources.


Assuntos
Citocromo P-450 CYP2D6 , Farmacogenética , Centros Médicos Acadêmicos , Sequência de Bases , Citocromo P-450 CYP2D6/genética , Genótipo , Humanos , Farmacogenética/métodos
10.
Genome Med ; 14(1): 34, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346344

RESUMO

BACKGROUND: The All of Us Research Program (AoURP, "the program") is an initiative, sponsored by the National Institutes of Health (NIH), that aims to enroll one million people (or more) across the USA. Through repeated engagement of participants, a research resource is being created to enable a variety of future observational and interventional studies. The program has also committed to genomic data generation and returning important health-related information to participants. METHODS: Whole-genome sequencing (WGS), variant calling processes, data interpretation, and return-of-results procedures had to be created and receive an Investigational Device Exemption (IDE) from the United States Food and Drug Administration (FDA). The performance of the entire workflow was assessed through the largest known cross-center, WGS-based, validation activity that was refined iteratively through interactions with the FDA over many months. RESULTS: The accuracy and precision of the WGS process as a device for the return of certain health-related genomic results was determined to be sufficient, and an IDE was granted. CONCLUSIONS: We present here both the process of navigating the IDE application process with the FDA and the results of the validation study as a guide to future projects which may need to follow a similar path. Changes to the program in the future will be covered in supplementary submissions to the IDE and will support additional variant classes, sample types, and any expansion to the reportable regions.


Assuntos
Farmacogenética , Saúde da População , Genômica , Humanos , Estados Unidos , Sequenciamento Completo do Genoma/métodos
11.
Life (Basel) ; 12(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35207566

RESUMO

Polygenic diseases, which are genetic disorders caused by the combined action of multiple genes, pose unique and significant challenges for the diagnosis and management of affected patients. A major goal of cardiovascular medicine has been to understand how genetic variation leads to the clinical heterogeneity seen in polygenic cardiovascular diseases (CVDs). Recent advances and emerging technologies in artificial intelligence (AI), coupled with the ever-increasing availability of next generation sequencing (NGS) technologies, now provide researchers with unprecedented possibilities for dynamic and complex biological genomic analyses. Combining these technologies may lead to a deeper understanding of heterogeneous polygenic CVDs, better prognostic guidance, and, ultimately, greater personalized medicine. Advances will likely be achieved through increasingly frequent and robust genomic characterization of patients, as well the integration of genomic data with other clinical data, such as cardiac imaging, coronary angiography, and clinical biomarkers. This review discusses the current opportunities and limitations of genomics; provides a brief overview of AI; and identifies the current applications, limitations, and future directions of AI in genomics.

12.
Hum Mutat ; 43(8): 1114-1121, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34923710

RESUMO

The All of Us Research Program (AoURP) is a historic effort to accelerate research and improve healthcare by generating and collating data from one million people in the United States. Participants will have the option to receive results from their genome analysis, including actionable findings in 59 gene-disorder pairs for which disorder-associated variants are recommended for return by the American College of Medical Genetics and Genomics. To ensure consistent reporting across the AoURP, in a prelaunch study the four participating clinical laboratories shared all variant classifications in the 59 genes of interest from their internal databases. Of the 11,813 unique variants classified by at least two of the four laboratories, classifications were concordant with regard to reportability for 99.1% (11,711), with only 0.9% (102) having reportability differences. Through variant reassessment, data sharing, and discussion of rationale, participating laboratories resolved all 102 reportable differences. These approaches will be maintained during routine AoU reporting to ensure continuous classification harmonization and consistent reporting within AoURP.


Assuntos
Genoma Humano , Saúde da População , Testes Genéticos/métodos , Variação Genética , Genoma Humano/genética , Genômica/métodos , Humanos , Estados Unidos
13.
Genet Med ; 23(12): 2404-2414, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34363016

RESUMO

PURPOSE: Cardiovascular disease (CVD) is the leading cause of death in adults in the United States, yet the benefits of genetic testing are not universally accepted. METHODS: We developed the "HeartCare" panel of genes associated with CVD, evaluating high-penetrance Mendelian conditions, coronary artery disease (CAD) polygenic risk, LPA gene polymorphisms, and specific pharmacogenetic (PGx) variants. We enrolled 709 individuals from cardiology clinics at Baylor College of Medicine, and samples were analyzed in a CAP/CLIA-certified laboratory. Results were returned to the ordering physician and uploaded to the electronic medical record. RESULTS: Notably, 32% of patients had a genetic finding with clinical management implications, even after excluding PGx results, including 9% who were molecularly diagnosed with a Mendelian condition. Among surveyed physicians, 84% reported medical management changes based on these results, including specialist referrals, cardiac tests, and medication changes. LPA polymorphisms and high polygenic risk of CAD were found in 20% and 9% of patients, respectively, leading to diet, lifestyle, and other changes. Warfarin and simvastatin pharmacogenetic variants were present in roughly half of the cohort. CONCLUSION: Our results support the use of genetic information in routine cardiovascular health management and provide a roadmap for accompanying research.


Assuntos
Cardiologia , Doenças Cardiovasculares , Adulto , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Testes Genéticos , Humanos , Farmacogenética/métodos , Testes Farmacogenômicos , Estados Unidos
14.
Am J Hum Genet ; 108(7): 1239-1250, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34129815

RESUMO

Despite release of the GRCh38 human reference genome more than seven years ago, GRCh37 remains more widely used by most research and clinical laboratories. To date, no study has quantified the impact of utilizing different reference assemblies for the identification of variants associated with rare and common diseases from large-scale exome-sequencing data. By calling variants on both the GRCh37 and GRCh38 references, we identified single-nucleotide variants (SNVs) and insertion-deletions (indels) in 1,572 exomes from participants with Mendelian diseases and their family members. We found that a total of 1.5% of SNVs and 2.0% of indels were discordant when different references were used. Notably, 76.6% of the discordant variants were clustered within discrete discordant reference patches (DISCREPs) comprising only 0.9% of loci targeted by exome sequencing. These DISCREPs were enriched for genomic elements including segmental duplications, fix patch sequences, and loci known to contain alternate haplotypes. We identified 206 genes significantly enriched for discordant variants, most of which were in DISCREPs and caused by multi-mapped reads on the reference assembly that lacked the variant call. Among these 206 genes, eight are implicated in known Mendelian diseases and 53 are associated with common phenotypes from genome-wide association studies. In addition, variant interpretations could also be influenced by the reference after lifting-over variant loci to another assembly. Overall, we identified genes and genomic loci affected by reference assembly choice, including genes associated with Mendelian disorders and complex human diseases that require careful evaluation in both research and clinical applications.


Assuntos
Exoma , Genoma Humano , Polimorfismo de Nucleotídeo Único , Estudos de Coortes , Doenças Genéticas Inatas/genética , Humanos , Valores de Referência
15.
J Biomed Inform ; 118: 103795, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33930535

RESUMO

Structured representation of clinical genetic results is necessary for advancing precision medicine. The Electronic Medical Records and Genomics (eMERGE) Network's Phase III program initially used a commercially developed XML message format for standardized and structured representation of genetic results for electronic health record (EHR) integration. In a desire to move towards a standard representation, the network created a new standardized format based upon Health Level Seven Fast Healthcare Interoperability Resources (HL7® FHIR®), to represent clinical genomics results. These new standards improve the utility of HL7® FHIR® as an international healthcare interoperability standard for management of genetic data from patients. This work advances the establishment of standards that are being designed for broad adoption in the current health information technology landscape.


Assuntos
Registros Eletrônicos de Saúde , Informática Médica , Genômica , Nível Sete de Saúde , Humanos , Medicina de Precisão
16.
Nature ; 591(7849): 211-219, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33692554

RESUMO

Polygenic risk scores (PRSs), which often aggregate results from genome-wide association studies, can bridge the gap between initial discovery efforts and clinical applications for the estimation of disease risk using genetics. However, there is notable heterogeneity in the application and reporting of these risk scores, which hinders the translation of PRSs into clinical care. Here, in a collaboration between the Clinical Genome Resource (ClinGen) Complex Disease Working Group and the Polygenic Score (PGS) Catalog, we present the Polygenic Risk Score Reporting Standards (PRS-RS), in which we update the Genetic Risk Prediction Studies (GRIPS) Statement to reflect the present state of the field. Drawing on the input of experts in epidemiology, statistics, disease-specific applications, implementation and policy, this comprehensive reporting framework defines the minimal information that is needed to interpret and evaluate PRSs, especially with respect to downstream clinical applications. Items span detailed descriptions of study populations, statistical methods for the development and validation of PRSs and considerations for the potential limitations of these scores. In addition, we emphasize the need for data availability and transparency, and we encourage researchers to deposit and share PRSs through the PGS Catalog to facilitate reproducibility and comparative benchmarking. By providing these criteria in a structured format that builds on existing standards and ontologies, the use of this framework in publishing PRSs will facilitate translation into clinical care and progress towards defining best practice.


Assuntos
Predisposição Genética para Doença , Genética Médica/normas , Herança Multifatorial/genética , Humanos , Reprodutibilidade dos Testes , Medição de Risco/normas
17.
JMIR Res Protoc ; 10(3): e25576, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33769305

RESUMO

BACKGROUND: Genomic medicine is poised to improve care for common complex diseases such as epilepsy, but additional clinical informatics and implementation science research is needed for it to become a part of the standard of care. Epilepsy is an exemplary complex neurological disorder for which DNA diagnostics have shown to be advantageous for patient care. OBJECTIVE: We designed the Implementation Science for Genomic Health Translation (INSIGHT) study to leverage the fact that both the clinic and testing laboratory control the development and customization of their respective electronic health records and clinical reporting platforms. Through INSIGHT, we can rapidly prototype and benchmark novel approaches to incorporating clinical genomics into patient care. Of particular interest are clinical decision support tools that take advantage of domain knowledge from clinical genomics and can be rapidly adjusted based on feedback from clinicians. METHODS: Building on previously developed evidence and infrastructure components, our model includes the following: establishment of an intervention-ready genomic knowledge base for patient care, creation of a health informatics platform and linking it to a clinical genomics reporting system, and scaling and evaluation of INSIGHT following established implementation science principles. RESULTS: INSIGHT was approved by the Institutional Review Board at the University of Texas Health Science Center at Houston on May 15, 2020, and is designed as a 2-year proof-of-concept study beginning in December 2021. By design, 120 patients from the Texas Comprehensive Epilepsy Program are to be enrolled to test the INSIGHT workflow. Initial results are expected in the first half of 2023. CONCLUSIONS: INSIGHT's domain-specific, practical but generalizable approach may help catalyze a pathway to accelerate translation of genomic knowledge into impactful interventions in patient care. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/25576.

18.
Am J Hum Genet ; 107(5): 932-941, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33108757

RESUMO

Harmonization of variant pathogenicity classification across laboratories is important for advancing clinical genomics. The two CLIA-accredited Electronic Medical Record and Genomics Network sequencing centers and the six CLIA-accredited laboratories and one research laboratory performing genome or exome sequencing in the Clinical Sequencing Evidence-Generating Research Consortium collaborated to explore current sources of discordance in classification. Eight laboratories each submitted 20 classified variants in the ACMG secondary finding v.2.0 genes. After removing duplicates, each of the 158 variants was annotated and independently classified by two additional laboratories using the ACMG-AMP guidelines. Overall concordance across three laboratories was assessed and discordant variants were reviewed via teleconference and email. The submitted variant set included 28 P/LP variants, 96 VUS, and 34 LB/B variants, mostly in cancer (40%) and cardiac (27%) risk genes. Eighty-six (54%) variants reached complete five-category (i.e., P, LP, VUS, LB, B) concordance, and 17 (11%) had a discordance that could affect clinical recommendations (P/LP versus VUS/LB/B). 21% and 63% of variants submitted as P and LP, respectively, were discordant with VUS. Of the 54 originally discordant variants that underwent further review, 32 reached agreement, for a post-review concordance rate of 84% (118/140 variants). This project provides an updated estimate of variant concordance, identifies considerations for LP classified variants, and highlights ongoing sources of discordance. Continued and increased sharing of variant classifications and evidence across laboratories, and the ongoing work of ClinGen to provide general as well as gene- and disease-specific guidance, will lead to continued increases in concordance.


Assuntos
Doenças Cardiovasculares/genética , Variação Genética , Genômica/normas , Laboratórios/normas , Neoplasias/genética , Doenças Cardiovasculares/diagnóstico , Biologia Computacional/métodos , Testes Genéticos , Genética Médica/métodos , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ensaio de Proficiência Laboratorial/estatística & dados numéricos , Neoplasias/diagnóstico , Análise de Sequência de DNA , Software , Terminologia como Assunto
19.
Mol Genet Genomic Med ; 8(3): e1130, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31971667

RESUMO

BACKGROUND: Germline mutations in PTEN are associated with the PTEN hamartoma tumor syndrome (PHTS), an umbrella term used to describe a spectrum of autosomal-dominant disorders characterized by variable phenotypic manifestations associated with cell or tissue overgrowth. We report a boy who developed severe progressive abdominal distention due to a dramatic adipose mass from the age of 7 months and developed recurrent hypoinsulinemic hypoglycemia that led to seizures at the age of 4 years. METHODS: Trio-based whole-genome sequencing was performed by using blood DNA from the child and his parents. The possible pathogenic variants were verified by Sanger sequencing. Functional characterization of the identified variant was completed by western blot. RESULTS: The child inherited a single-nucleotide deletion NM_000314.6:c.849delA (p.Glu284Argfs) in the tumor suppressor gene PTEN from his father. The paternal family members have a history of cancer. It is conceivable that PTEN loss-of-function induced the adipose tumor growth and hypoglycemia, although the proband did not meet the usual diagnosis criteria of Cowden syndrome or Bannayan-Riley-Ruvalcaba syndrome that are characterized by germline mutations of PTEN. CONCLUSION: This case underlines the variability of phenotypes associated with PTEN germline mutations and provides useful information for diagnosis and genetic counseling of PTEN-related diseases for pediatric patients.


Assuntos
Neoplasias Abdominais/genética , Hipoglicemia/genética , Neoplasias Lipomatosas/genética , PTEN Fosfo-Hidrolase/genética , Fenótipo , Convulsões/genética , Neoplasias Abdominais/patologia , Pré-Escolar , Humanos , Hipoglicemia/patologia , Mutação com Perda de Função , Masculino , Neoplasias Lipomatosas/patologia , Linhagem , Convulsões/patologia , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...